
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

18
7

31
6

B
1

��&�����������
(11) EP 2 187 316 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
18.01.2012 Bulletin 2012/03

(21) Application number: 09275018.1

(22) Date of filing: 31.03.2009

(51) Int Cl.:
G06F 13/16 (2006.01) G06F 9/38 (2006.01)

(54) Gated storage system and synchronization controller and method for multiple multi-threaded
processors

Speichersystem mit Gate und Synchronisationssteuergerät und Verfahren für mehrfache Multi-Thread-
Prozessoren

Système de stockage commandé par porte et contrôleur de synchronisation et procédé pour
processeurs multiprocessus

(84) Designated Contracting States:
DE FR GB

(30) Priority: 17.11.2008 US 272290

(43) Date of publication of application:
19.05.2010 Bulletin 2010/20

(73) Proprietor: Mobileye Technologies Ltd
Nicosia (IL)

(72) Inventor: Navon, Mois
90435 Efrat (IL)

(74) Representative: Jehan, Robert et al
Williams Powell
Staple Court
11 Staple Inn Buildings
London, WC1V 7QH (GB)

(56) References cited:
EP-A- 1 132 818 US-A1- 2005 251 639

EP 2 187 316 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

1. Technical Field

[0001] The present invention relates to multi-process-
ing using multiple processors, in which each processor
is capable of supporting multiple threads. Specifically,
the present invention relates to a system and method for
inter-thread communications between the threads of the
various processors in the system, and to a gated storage
system and to a method of synchronization of data.

2. Description of Related Art

[0002] Multiprocessing systems continue to become
increasingly important in computing systems for many
applications, including general purpose processing sys-
tems and embedded control systems. In the design of
such multiprocessing systems, an important architectural
consideration is scalability, In other words, as more hard-
ware resources are added to a particular implementation
the machine should produce higher performance. Not
only do embedded implementations require increased
processing power, many also require the seemingly con-
tradictory attribute of providing low power consumption,
in the context of these requirements, particularly for the
embedded market, solutions are implemented as "Sys-
tems on Chip" or "SoC." MIPS Technologies, Inc., ARM,
PowerPC (by IBM) and various other manufacturers, of-
fer such SoC multiprocessing systems, In multiprocess-
ing systems, loss in scaling efficiency may be attributed
to many different issues, including long memory latencies
and waits due to synchronization of thread processes.
[0003] Synchronization of processes using software
and hardware protocols is a well-known problem, pro-
ducing a wide range of solutions appropriate in different
circumstances. Fundamentally, synchronization ad-
dresses potential issues that may occur when concurrent
processes have access to shared data. As an aid in un-
derstanding, the following definitions are provided.
[0004] The term "multiprocessing" as used herein re-
fers to the ability to support, more than one processor
and/or the ability to allocate tasks between the multiple
processors. A single central processing unit (CPU) on a
chip is generally termed a "core"’ and multiple central
processing, units which are packaged on the same die
are known as multiple "cores" or "muiti-core" The term
"symmetric multiprocessing" (SMP), as used herein re-
fers to a multiprocessor computer architecture where two
or more identical processors are connected to a single
shared main memory. Common multiprocessor systems
today use an SMP architecture. In the case of multi-core
processors, the SMP architecture as applied to the cores,
treats the cores as separate processors.
[0005] The term "thread" as used herein is a sequential
instruction stream. Many conventional processors run a

single thread at a time. A "multithreaded processor" runs
multiple threads at a time. A "hardware thread" or "thread
context" as used herein, is the processor hardware state
necessary to instantiate a thread of execution of an ap-
plication instruction stream. The thread context incudes
general purpose registers (GPRs) and program counter,
[0006] A "virtual processing element" (VPE) is a CPU
which includes the processor state and logic necessary
to instantiate a task. The VPE is an instantiation of a full
architecture and elements, including privileged resourc-
es, sufficient to run a per-processor operating system
image, In a MIPS processor, the set of shared CPO reg-
isters and the thread contexts affiliated with them make
up a VPE. (Virtual Processing Element).
[0007] A virtual multiprocessor is a collection of inter-
connected VPEs. The virtual processor is "virtual" in the
sense that a multiprocessor system usually refers to a
system with several independent processors, whereas
here a single core instantiates several VPEs. The VPEs
in such a system may, or may not, implement multi-
threads.
[0008] The term "gating memory", "gating stornge",
"gated memory", and "gated storage" are used herein
interchangeably and refer to data storage elements (e.g.
memory, registers) which are not directly accessible ex-
cept, through logic circuitry which manages the access
from multiple agents.
[0009] US-A-2005/0251639 discloses a synchroniza-
tion between threads of different processors of the same
manufacturer - in this case MIPS. The synchronization
of threads requires another layer of intercommunications
of their respective processor. This intercommunication
is needed, among other things, primarily to arbitrate ac-
cess to the shared resource the gated memory).
[0010] Improvements to synchronization among
threads in a multithreaded multiprocessing environment
is desirable, particularly when individual threads may be
active on more than one multiple processors; additionally
the prior art does not allow for multiple processors from
different manufacturers to be synchronized together,
[0011] By way of example, reference is now made to
Figures 1 and 1A which schematically illustrate a con-
ventional multithreaded processor 105 of MIPS architec-
ture. In processor 105 that is compatible with the industry-
standard MIPS32K and/or MIPS64K instruction Set Ar-
chitectures (a "MIPS Processor"), a thread context 115
includes a state of a set of general purpose registers 19,
Hi/Lo multiplier result registers, a representation of a pro-
gram, counter 17, and an associated privileged system
control state, in the MIPS architecture, thread context
115 shares resources 18 with other thread contexts 115
including the CPO registers used by privileged code in
an Operating System (OS) kernel 16. Thread contexts
115 provide the hardware states to run processes 14a
-14e in one-to-one correspondance with thread contexts
115a-115e. A MIPS processor is composed of a least
one independent proccessing element referred to as a
Virtual Processing Element ("VPE") 12. A VPE includes

1 2

EP 2 187 316 B1

3

5

10

15

20

25

30

35

40

45

50

55

at least one thread context 115. Processor 105 contains
number of VPEs 12, each of which operates as an inde-
pendent processing element through the sharing of re-
sources 18 in processor M5 and supporting an instruction
set architecture. The set of shared CP0 registers and
affiliated thread contexts 115 make up VPE 12. To soft-
ware, a single core MIPS processor 105 with two VPEs
12 looks like a symmetric multiprocessor ("SMP") with
two cores. This allows existing multiple SMP-capable op-
erating systems 16 (OS0, OS1) to manage the set of
VPEs 12, which transparently share resources 18. In
processor 105, two VPEs 12 are illustrated VPE 12A
includes thread contexts 115a and 115b, and VPE 12B
includes thread contexts 115e, 115d and 115e.
[0012] Multithreaded programs can be running more
threads than there are thread contexts on a VPE 12, by
virtualizing them in software such that at any particular
point during execution or a program, a specific thread is
bound to a particular thread context 115. The number of
that thread context 115 provides a unique identifier
(TCID) to corresponding thread 14 at that point in time.
Context switching and migration can cause a single se-
quential thread 14, of execution, to have a series of dif-
ferent thread contexts 115 at different times.
[0013] Thread contexts 115 allow each thread or proc-
ess 14 to have its own instruction butter with pre-fetching
so that the core can switch between threads 14 on a
clock-by-clock basis to keep the pipeline as full as pos-
sible. Thread contexts 115 act as interfaces between
VPE 12 and system resources. A thread context 115 may
be in one of two allocation states, free or activated. A
tree thread context has no valid content and cannot be
scheduled to issue instructions. An activated thread con-
text 115 is scheduled according to the implemented pol-
icies to fetch and issue instructions from its program
counter 17. Only activated thread contexts 115 may be
scheduled. Only free thread contexts may be allocated
to support new threads 14. Allocation and deallocation
of thread contexts 115 may be performed explicitly by
privileged software, or automatically via FORK and
YIELD instructions which can be executed in user mode.
Only thread contexts 115 which have been explicitly des-
ignated as Dynamically Allocatable (DA) may be allocat-
ed or deallocated by FORK and YIELD.
[0014] An activated thread context 115 may be running
or blocked. A running thread context 115 fetches and
issues instructions according to the policy in effect for
scheduling threads for processor 105. Any or all running
thread contexts 115 may have instructions in the pipeline
of the processor core at a given point of time, but it is not
known in software precisely which instructions belong to
which running threads 14. A blocked thread context is a
thread context 115 which has issued an instruction which
performs an explicit synchronization that has not yet been
satisfied. While a running, activated thread context 115
may be stalled momentarily due to functional unit delays,
memory load dependencies, or scheduling roles, its in-
struction stream advances on its own within the limita-

tions of the pipeline implementation. The instruction
stream of a blocked thread context 115 cannot advance
without a change in system state being effected by an-
other thread 14 or by external hardware, and as such
blocked thread context 115 may remain blocked for an
unbounded period of time.
[0015] A data storage contention issue arises when
more than one thread context 115 tries to access the
same storage element attached to processor 105. In or-
der to address this issue, US-A-2005/0251639 discloses
an InterThread Communications Unit (ITU) which pro-
vides a mechanism for communication between thread
contexts 115 using gating storage 110. US-A-
2005/0251639 is included herein by reference for all pur-
poses as if entirely set forth herein.
[0016] Reference is now made to Figure 1B, a simpli-
fied schematic block diagram of a system 100 of the prior
art (shown in more detail in Figure 2). Multiple MIPS proc-
essors 105 are connected to and share gated storage
110 through a signaling interface 225. Each MIPS proc-
essor 105 includes InterThread Communications Unit
(ITU) 120 which together manage communications be-
tween MIPS processors 105 and gated storage 110. As
shown in Figure 1B, ITUs 120 are wired to drive and
accept strobes from each other using a signaling inter-
lace 180.
[0017] Reference is now made to Figure 2, a more de-
tailed schematic block diagram of system 100 from US-
A-2005/0251639, which includes (N) multiple multi-
threaded processors 105i each coupled to a gating stor-
age 110. Each processer 105i is capable of concurrent
support of multiple thread contexts 115 that each issue
instructions, some of which are access instructions into
gating storage 110. An inter-thread communications unit
(ITU) 120 manages these access instructions by storing
access instructions in a request-storage 125, a buffer/
memory inside ITU 120, and ITU 120 communicates with
thread contexts 115 and other processor resources using
one or more first-in first-out (FIFO) registers 130x.
[0018] To allow for synchronization of various threads
14 that need to intercommunicate, inter-thread commu-
nication (ITC) memory 110 is used and is designed in
order to allow threads 14 to be blocked on loads or stores
until data has been produced or consumed by other
threads 14. For example, if a thread 14 attempts to read
a memory element, but the memory element, has not as
yet been written, then the read request, remains
"shelved" until the corresponding, datum is available.
[0019] Processor 105i includes a load/store FIFO
(FIFO 130L/S) for transmitting information to ITU 120 and
a data FIFO (FIFODATA) for receiving information from
ITU 120. ITU 120 communicates with various resources
18 of its processor 105i through FIFOs 130x, such as for
example with an arithmetic logic unit. (ALU), a load/store
unit (LSU) and task scheduling unit (TSU) when commu-
nicating with various (bread contexts 115. Further struc-
ture and a more detailed description of the operation of
ITU 120 are provided below in the discussion of Figure

3 4

EP 2 187 316 B1

4

5

10

15

20

25

30

35

40

45

50

55

3. The main responsibility of the TSU is to switch threads.
While the following description makes use of these
LSU/ALU/TSU functional blocks, these blocks and the
interdependence of these blocks are but one example of
an implementation of processor 105. In a broad sense,
gating storage 110 is a memory, and ITU 120 is a con-
troller for this memory and the manner by which a mem-
ory controller communicates to its memory and to a proc-
essor be implemented in many different ways.
[0020] Gating storage 110, in a generic implementa-
tion, may include one or both of two special memory lo-
cations: (a) inter-thread communications (TTC) storage
memory 150, (b) a FIFO gating storage 155. Access in-
structions executed by ITO 120 can initiate accesses to
Memory 150 from a particular data location using one of
the associated access method modifiers for that partic-
ular data location.
[0021] FIFO gating storage 155 allows threads in mul-
tithreaded processor 105 to synchronize with external
events. The data of storage memory 150 enables thread-
to-thread communication and the data of FIFO gating
storage 155 enables thread-to-external event communi-
cation. FIFO gating storage 155 includes FIFOs 160 for
communications in these data driven synchronization ac-
tivities,
[0022] The fundamental property of thread context
storage 110 is that loads and stores can be precisely
blocked if the state and value of the cell do not meet the
requirements associated with the view referenced by the
load or store. The blocked loads and stores resume ex-
ecution when the actions of other threads of execution,
or possibly those of external devices, result in the com-
pletion requirements being satisfied. As gating storage
references, blocked thread context loads and stores can
be precisely aborted and restarted by system software.
[0023] ITU 120 accepts commands (read, write, kill re-
quest) from various thread contexts 115 and responds
according to the status of the target, memory device. A
thread context 115 that is waiting for a response can kill
its request using the kill command which is sent along
with its thread context identifier (TCID).
[0024] Reference is now made to Figure 3, a schematic
block diagram from US-A-2005/0251639 illustrating
more detail of ITU 120 coupled to gating storage 110 as
shown in Figure 2. ITU 120 includes request storage 125
and a controller 200 coupled to both request storage 125
and to an arbiter 205. A multiplexer 210, coupled to an
output of request storage 125, selects a particular entry
in request storage 125 responsive to a selection signal
from arbiter 205. ITU 120 receives and transmits data to
thread contexts 115 shown in Figure 2 using multiple
data channels 215, including a status channel 215STATUS
and a LSU data channel 215LSU through a processor
interface 220. Data channels 215x use one or more FIF-
Os 130x shown in Figure 2. ITU 120 has a command/
response protocol over interface 220 with respect to LSU
and a status/kill protocol over interface 220 to thread con-
texts 115 within its particular processor 105 (i.e., every

processor 105 has its own unique ITU 120). Signaling
interface 215 incudes general signals (clock, reset),
standard memory signals (address, byte enables, data),
command signals (read, write, kill) as well as the thread
context specific signals (TCID and response TCID).
[0025] Additionally, ITU 120 communicates with grat-
ing storage 110 (denoted in Figure 3 as "Access Control
Memory") and with other ITUs 120 in processors 105
using an external interface 225. Controller 200 manages
internal interfaces to thread contexts 115 using processor
interface 220 (through the LSU/status channels for ex-
ample) and to external (external to each processor 105i)
interfaces (such as gating storage 110 and other ITUs
120 of other processors 105i).
[0026] ITU 120 accepts loads/stores (LDs/STs), after
any required translation, from an LSU. The LSU detects
whether any particular load or store is happening to an
ITC page (these pages exist in gating storage 110) based
on a decode in the physical memory space. These LD/ST
"requests" are included within the scope of the term
"memory access instruction" as used herein. Controller
200 manages the storage and retrieval of each memory
access instruction in request storage 125. Request stor-
age 125 of the preferred embodiment has NTC number
of entries, where NTC is the number of hardware threads
supported by the associated processor 105. This number
of entries allows ITU 120 to keep "active" one gating stor-
age 110 access from each thread context 115.
[0027] Controller 200 continues to add memory access
instructions to request storage 125 as they are received,
and continues to apply these memory access instructions
to gating storage 110. At some point, depending on the
occupancy of request storage 125 (RS), there may be
multiple unsuccessful accesses and/or multiple untried
memory access instructions in request storage 125. At
this point, memory access instructions in request shelf
125 are arbitrated and sent out periodically to external
interface 225. Arbitration is accomplished by controller
200 applying an arbitration policy to arbiter 205 which
selects a particular one memory access instruction from
request shelf 125 using multiplexer 210.
[0028] In the case of a ’success’ (i.e., the memory ac-
cess instruction is executed using the applicable memory
access method modifier extracted from gating storage
110 that was related to the memory storage location ref-
erenced by the memory access intruction) ITU 120 sends
back a response to processor 105p over processor inter-
face 220. Data and acknowledge are both sent back for
a load type operation while an acknowledge is sent for a
store type operation. An acknowledge is sent to proces-
sor 105p (e.g. the LSU sends acknowledgment to the
TSU) also, which moves that thread context 115p state
from blocked to runnable. The memory access instruction
to ITU 120 completes and is deallocated from request
storage 125.
[0029] In the case of a ’fail’ the memory access instruc-
tion is unable to be executed using the applicable mem-
ory access method modifier extracted from gating stor-

5 6

EP 2 187 316 B1

5

5

10

15

20

25

30

35

40

45

50

55

age 110 that was related to the memory storage location
referenced by the memory access instruction), ITU 120
performs any necessary housekeeping on management
tag data associated with the stored memory access in-
struction. Whenever a new access is made to ITU 120,
or an external event occurs on external ITU interface 220,
ITU 120 retries all the outstanding requests in request
storage 125, for example using a FCFS (First Come First
Serve) arbitration policy. This preferred policy ensures
fairness and is extendable in a multiprocessor situation.
[0030] On an exception being taken on a particular
thread context 115, or when thread context 115p be-
comes halted, processor 105p signals an abort for the
outstanding ITC access of thread context 115p. This
abort, signal causes ITU 120 to resolve a race condition
(the "race" between aborting that operation or completing
the operation which could have occurred in the few cycles
it takes to cancel an operation) and accordingly to cancel
or to complete the blocked memory access instruction
operation and return a response to interface 220 (e.g.,
using IT_resp[2:0]). Processor 105 using interface 220
(e.g., using the IT_Cmd bus) requests a kill by signaling
to ITU 120 (e.g., by asserting the kill signal on IT_Cmd
along with the thread context ID (e.g. IT_cmd_tcid[PTC-
1:0])). Processor 105 maintains the abort command as-
serted until it samples the kill response. ITU 120 re-
sponds to the abort with a three bit response, signaling
abort or completion. The response triggers the LSU,
which accordingly deallocates the corresponding load
miss-queue entry. This causes the instruction fetch unit
(IFU) to update the EPC [event driven process? unde-
fined TLA] of the halting thread context 115p accordingly.
In other words, when the abort is successful, program
counter 17 of the memory access instruction is used; but
when the operation completes then program counter 17
of the next instruction (in program order) is used to update
the EPC of thread context 115p. For loads, ITU 120 re-
turns a response and the LSU restarts thread context
115p corresponding to the thread context ID on the re-
sponse interface. For stores, ITU 120 returns an acknowl-
edgement and, simular to the load, the LSU restarts the
thread context.
[0031] According to the disclosure of US-A-200S/
0251639. synchronization between thread contexts 115
of different processors 105i requires another layer of in-
tercommunications between ITUs 120 of their respective
processor 105i ITU 120 of each processor 105i is coupled
to gating storage 110 (i.e., to memory 150 and to FIFO
gating storage 155) as well as to each other ITU 120 of
other processors 105i of system 100 for bidirectional
communication. This intercommunication is needed,
among other things, primarily to arbitrate access to the
shared resource (i.e., the gated memory). Improvements
to synchronization among threads in a multithreaded
multiprocessing environment is desirable, particularly
when individual threads may be active on more than one
multiple processors.

BRIEF SUMMARY

[0032] The present invention seeks to provide im-
proved synchronization between threads in multiple
threaded processing.
[0033] The preferred embodiment can provide, for ex-
ample, a system and method for synchronization be-
tween thread contexts of a system on a chip including
multiple multithreaded processors which eliminates the
need for multiple arbiters 205 and intercommunications
180 between multiple ITUs 120.
[0034] According to an aspect of the present invention,
there is provided a system as specified in claim 1.
[0035] The preferred system includes multiple control
interfaces attached externally to respective multiple mul-
tithreaded processors. The multithreaded processors
each have at least one thread context running an active
thread so that multiple thread contexts are running on
the multithreaded processors. A memory unit (e.g. FIFO
and/or RAM) is connected to and shared between the
multithreaded processors. The thread contexts request
access to the gated memory by communicating multiple
access requests over the control interfaces. The access
requests originate from one or more of the thread con-
texts within one or more of the multithreaded processors.
A single request storage is shared by the multithreaded
processors. A controller stores the access requests in
the single request storage. The access requests are typ-
ically from two or more of the thread contexts within two
or more of the multithreaded processors. The multi-
threaded processors are optionally of different architec-
tures, (e.g MIPS and ARM). The system-level inter-
thread communications unit is preferably the only inter-
thread communications unit in the gated storage system.
The controller and the request storage are preferably op-
erable for storing in the request storage, during a single
clock cycle, one of the access requests from any of the
multithreaded processors. The controller and the request
storage are operable for storing in the request storage,
preferably during a single clock cycle, at least two of the
access requests from at least two the multithreaded proc-
essors. The controller and the request storage are further
operable for deallocating one of the access requests,
thereby removing the one access request from the re-
quest storage, during the single clock cycle while simul-
taneously accepting other access requests from the mul-
tithreaded processors. The controller is preferably oper-
able for handling a kill request from any of the multithread-
ed processors which removes from the request storage
any of the access requests. The kill request is signaled
to the controller via the external control interface along
with an identifier identifying the thread context to be killed,
upon which the controller appends an identifier identify-
ing the requesting processor according to the external
control interface from which the request was received
(i.e., each interface is dedicated to a specific processor).
The controller is preferably adapted for handling the ac-
cess requests from any of the multithreaded processors

7 8

EP 2 187 316 B1

6

5

10

15

20

25

30

35

40

45

50

55

by receiving via the control interfaces an identifier iden-
tifying the thread context.
[0036] According to another aspect of the present in-
vention, there is provided a method of synchronization
of data as specified in claim 9.
[0037] The preferred embodiment provides a method
for synchronization of thread contexts in a gated storage
system. The gated storage system includes (a) external
control interfaces connected to multithreaded processors
and (b) memory connected to and shared between the
multithreaded processors. An active thread is run in each
of the multithreaded processors so that thread contexts
run the active threads on the multithreaded processors.
Access to the gated memory is requested by communi-
cating access requests over the control interfaces. The
access requests originate from any of the thread contexts
within any of the multithreaded processors. A single re-
quest storage is shared by the multithreaded processors.
All access requests from the multithreaded processors
are stored in the single request storage. During a single
clock cycle, one of the access requests is stored from
any of the multithreaded processors. During a single
clock cycle, at least two access requests are preferably
stored from at least two of the multithreaded processors.
One of the access requests is deallocated, by removing
the one access request from the request storage during
the single clock cycle. New access requests are stored
in the same cycle as deallocation is effected. Access re-
quests are handled from any of the multithreaded proc-
essors by receiving via the control interfaces at least one
identifier identifying a thread context and a processor. A
kill request is handled by removing from the request stor-
age any access requests from any of the multithreaded
processors by receiving via the control interfaces at least
one identifier identifying at least one of the thread con-
texts. Multiple new access requests are stored in the
same cycle as multiple kill requests effect deallocation
(as well as standard deallocation due to servicing a pend-
ing request).
[0038] in the preferred embodiment, the system in-
cludes multiple multi-threaded processors. Each multi-
threaded processor is configured to have at least one
thread context running at least one active thread. A sys-
tem-level inter-thread communications unit includes mul-
tiple control interfaces. Each control interface connects
respectively to one of the multi-threaded processors. A
gated memory connects to the system-level inter-thread
communications unit and is shared by the multithreaded
processors. The thread contexts request access to the
gated memory by communicating multiple access re-
quests over the control interfaces. The access requests
originate from any of the thread contexts within any of
said multithreaded processors. A single request storage
operatively connects to the control interfaces and a con-
troller is adapted to store the access requests in the single
request storage.
[0039] These, additional, and/or other aspects and/or
advantages of the present invention are set forth in the

detailed description which follows; possibly inferable
from the detailed description; and/or learnable by prac-
tice of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0040] Embodiments of the invention are described
below, by way of example only, with reference to the ac-
companying drawings, wherein:

Figure 1 schematically illustrates a conventional
multithreaded processor of MIPS architecture;

Figure 1A schematically illustrates relevant details
of a thread context (TC) which is part of the conven-
tional multithreaded processor 105 of Figure 1;

Figure 2 is a schematic block diagram of the system
of US 2005/0251639, which includes multiple (N)
multithreaded processors 105, each coupled to a
gating storage 110;

Figure 3 is another schematic block diagram from
US2005/0251639 illustrating more detail of the ITU
120 coupled to gating storage 110 as shown in Fig-
ure 2;

figure 4 is a simplified block diagram of a system
level interthread communications unit (system-level
ITU) externally connected to two multi-threaded
processors which share interthread communications
storage (ITC Store) internal to the ITU, according to
an embodiment of the present invention;

figure 5 is a flow diagram which graphically illustrates
a control method, in the system of Figure 4;

figure 6 is s a simplified block diagram of a system
level interthread communications unit (system-level
ITU), according to a preferred embodiment of the
present invention, with synchronisation between
thread contexts of multiple multithread processors
handled within a single Request Shelf;

Figure 7 is a simplified block diagram of a general
system architecture employing a system-level ITU
to handle accesses from various processors to a
shared memory resource; and

figure 8 is an illustration of a simplified method ac-
cording to an embodiment of the present invention.

DETAILED DESCRIPTION

[0041] Reference will now be made in detail to embod-
iments of the present invention, examples of which are
illustrated in the accompanying drawings. The embodi-
ments are described below to explain the teachings here-

9 10

EP 2 187 316 B1

7

5

10

15

20

25

30

35

40

45

50

55

in by referring to the Figures.
[0042] It should be understood that although the fol-
lowing discussion relates multithreating MIPS proces-
sors, the teachings herein may implemented using other
multithreaded processor architectures. Indeed, the in-
ventors contemplate the application of this claimed in-
vention to various other architectures.
[0043] Before explaining embodiments of the invention
in detail, it is to be understood that the invention is not
limited in its application to the details of design and the
arrangement of the components set forth in the following
description or illustrated in the drawings. The invention
is capable of other embodiments or of being practiced or
carried out in various ways. Also, it is to be understood
that the phraseology and terminology employed herein
is for the purpose of description and should not be re-
garded as limiting.
[0044] By way of introduction, a principal intention of
the described embodiments is to improve the synchroni-
zation between thread contexts of a system on a chip
including multiple multithread processors. US-A-
2005/0251639 discuses InterThread Communications
Unit (ITU) 120 which processes access requests from
multiple thread contexts 115 within a single processor
105. While US-A-2005/0251639 does disclose expand-
ability to multiple processors 105, with mutiple ITUs 120,
the method disclosed performs task scheduling by sign-
aling between all ITUs 120 of system 100. Specifically in
paragraph 0062, US-A-2005/0251639 disposes the use
of signaling, e.g. a strobe signal to indicate to all ITUs
120 that shared gated memory 110 has been updated.
The strobe signal causes each ITU 120 to cycle through
the pending requests in its request storage 125 (also
known as request shelves 125). The approach disclosed
in US-A-2005/0251639 requires that all the ITUs 120
have to be wired to drive and accept strobes from each
other. Furthermore, the approach disclosed in U-A-
2005/0251639 requires cycling through all the request
shelves 125 upon every strobe signal.
[0045] Referring now to the drawings. Figure 4 illus-
trates a simplified block diagram of a system 40 of a sys-
tem-level-interthread-communications unit 420 external-
ly connected to two multi-threaded processors 405A and
405B which share interthread communications storage
410. System-level ITU 420 includes three primary ele-
ments: main control unit 430, ITC interface block 432 and
ITC storage 410. Each processor 405 is connected to
ITU 420 through a dedicated interface 423A and 423B.
Signaling between processors 405 and respective inter-
faces 423, may preferably be in compliance with the
standard as disclosed in US-A-2003/0251639 for stand-
ard MIPS processors, e.g. MIPS 34K. syslem-level ITU
420 includes request shelf 425A and 425B which store
requests respectively of thread contexts 115 of both proc-
essors 405A and 405B.
[0046] Request shelves 425A and 425B are controlled
by a request shelf control block 427 which controls ac-
cess of thread contexts 115 to request shelves 425A and

425B. Handling of the pending requests stored in request
shelves 425A and 425B is event driven and performed
in both request, shelves 425A and 425B as data stored
in gating storage 410 become available and valid. One
method to handle pending requests stored in request
425A and 425B is to include logic circuitry in control block
427 to alternate between request shelves 425A and
425B, thus always checking the other request shelf 405
for pending requests after processing one of request
shelves 425A and 425B. Logic circuitry in block 427 may
be designed so that pending requests that are not imme-
diately handled are re-assessed following the processing
of any requests.
[0047] Reference is now made to Figure 5, a flow di-
agram which graphically illustrates a method 450 used,
in system 40, of cycling through pending requests in al-
ternating fashion between those stored in request shelf
425A and those scored in request shelf 425B. An idle
state 51 is entered (for instance in line (c)) when there
are no pending requests from any thread context 115 of
processors 405. From idle sate 51, if a request is pending
from processor 405A, the request is written (step 57) to
request shelf 425A following which request shelf 425A
is processed (step 59). Typically, if a new request arrives
from processor 405B, the request is then written (step
53) to request shelf 425B following which request shelf
425B is processed (step 55). If two requests arrive si-
multaneously while in the idle state 51 then one of the
processors is given precedence, e.g. 405A, such that its
request is shelved (step 57) to shelf 425A and processed
(step 59), after which the request from 405B is shelved
(step 53) and processed (step 55). Similarly, if a request
from one processor (e.g., 405A comes while the control
logic is already processing a request from the other proc-
essor (e.g., 405B), the new request is processed upon
completion of the current request processing. If, on the
other hand there is not a new request from the other
processor, then the requests of current processor are
continuously shelved and processed.
[0048] However, using system 40, there could be a
scenario in which only thread context 115 in one proces-
sor, e.g. 405A is the data "producer" (i.e., always re-
quests writing to locations in gated storage 410) and all
other thread contexts 115, from both processors 405, In
system 40, are data. "consumers" (e.g., always request
reading from the locations in gated storage 410). In such
a case, in that control block 427 is configured to process
requests in a fashion alternating between processors
405, the following result likely occurs: read requests are
shelved in both request shelves 425; a write request
shelved in request shelf 425A is processed and then a
read request ls processed from request shelf 425B. Sim-
ilarly, every time a write is processed in request shelf
425A, a read request is subsequently processed in re-
quest shelf 425B, thus read requests pending in request
shelf 425A are never processed. This issue may be ad-
dressed by tagging each shelf entry by an "arrival"
number indicating when the request was shelved. Control

11 12

EP 2 187 316 B1

8

5

10

15

20

25

30

35

40

45

50

55

block 427 is configured (in addition to checking whether
the pending request may be performed) to read the arrival
number tagging the pending requests in both request
shelves giving precedence to the pending request of low-
est arrival number. However, at some point, given a finite
number of bits assigned for the arrival number field, the
arrival numbers "wrap around" and start again from zero.
Hence, all pending requests are preferably renumbered
with new arrival numbers when the arrival number coun-
ter reaches a maximum.
[0049] Reference is now made to Figure 6 a simplified
block diagram of a system 60 on chip, according to an
embodiment of the present invention, with synchroniza-
tion between thread contexts 115 of multithreaded proc-
essors 405A and 405B. A system level Interthread Com-
munications Unit (system-level ITU) 620 is externally
connected to two multi-threaded processors 405A and
405B which share Interthread Communications (ITC)
storage 410. System-level ITU 620 includes three prima-
ry elements: main control unit 630, ITC interface block
432 and ITC storage 410. Each processor 405 is con-
nected respectively to system-level ITU 620 through ded-
icated interfaces 423A and 423B. Signaling between
processors 405 and respective interfaces 423, is prefer-
ably standard as disclosed in US 20050251639 for stand-
ard MIPS processors, e.g. MIPS 34K. System-level ITU
620 includes a single request shelf 625 which stores re-
quests of thread contexts 115 of both processors 405A
and 405B. Since, in this example there are two proces-
sors 405 which can perform accesses simultaneously,
system-level ITU 620 is preferably configured to shelve
two pending requests from both processors 405 during
a single clock pulse. Request shelf 625 is controlled by
request shelf control block 627 which is responsible for
accepting memory access requests from thread contexts
115 and storing them to request shelf 625. Processing
of the pending requests stored in request shelf 625 is
performed by cycling through request shelf 625 and ex-
ecuting the requests as dictated by the exigencies of gat-
ing storage 410 (e.g., that valid data is available for a
read request, that a memory location is available for a
write request). Request shelf control block 627 is also
responsible for removing processed requests and sign-
aling such completion of execution to the requesting
thread context.
[0050] A request shelf control block 627 preferably
handles cycling through pending requests stored in re-
quest shelf 625. If there are no pending requests from
any of process 405 for accessing gating storage 410,
then request shelf 625 is idle. Otherwise, if there is a
pending request from one of processors 405, the request,
is shelved in request shelf 625 following which the re-
quest shelf is processed. If two requests arrive simulta-
neously, they are both shelved in the same clock cycle,
the access from one processor is given precedence with-
in the shelf, e.g., 405A, such that its request, higher up
in the shelf is processed first. Access requests by the
various system thread contexts to gated storage 410 are

performed under control by request shelf control block
627. All requests are answered in turn by driving com-
munication lines 215 with response data and relevant
access information to the requesting processor 405;
each processor 405 distinguishes between its thread
contexts 115 using identifier lines 215 driven by ITU 620.
[0051] ITU storage 410 provides gating storage for in-
ter-communication between all system thread contexts
115 including thread contexts 115 of different processors
405. As an example, ITC storage 410 has the following
storage cells: 24 standard (non-FIFO) register cells, 8
FIFO registers of 64 bytes (16 entries of 32bits). The
number of entries, (e.g. 32 for the present example) are
indicated on the IT_num_entries[10.0] lines which are
driven to both of multithreaded processors 405.
[0052] A multithreaded processor 405, e.g. MIPS 34K,
drives (blk_grain) lines which define granularity or spac-
ing between storage cell entries in ITC storage 410, for
mapping cells out different pages of memory 410. Since
system on chip (SoC) 60 employs multiple processors
405, e.g. two MIPS34K processor, these lines which de-
fine granularity may be handled appropriately so that all
processors 405 use the same granularity. To allow for
programmability, system-level ITU 620 may use grain
lines (blk_grain) from one designated multithreaded
processor 405A and software may insure that other proc-
essors, e.g MIPS 34K 405B uses the chosen granularity.
[0053] One of processors 405 accesses system-level
ITU 620 by placing a command on lines 215, along with
other relevant access information (e.g. id, addr, data).
This data, along with the command, is referred to herein
as "request data". Strobes and/or enables are not re-
quired, instead, system-level ITU 620 accepts as a valid
access every clock cycle during which there is active cmd
data (i.e., read, write, kill) driven. A given thread context
115 does not drive another command (except for kill) until
it has received a response from ITU 620 (on a dedicated
signal line on COMM. I/F 215). On the next clock, how-
ever, another thread context 115 can drive "request da-
ta". Request shelf 625 maintains one entry per thread
context 115. It should be noted that though the kill com-
mand is an independent "request data" command that
could come from thread context 115, there is no need to
buffer the kill command in a unique shelf, but rather re-
quest shelf control block 627 modifies the currently buff-
ered "request data" to be killed, thereby indicating to the
request shelf logic 627 that the request is to be killed.
Thus when the request shelf logic 627 is ready to process
that shelf entry it notes that the "request data" is killed
and thus deallocates the entry.
[0054] Deallocation of an entry is an operation per-
formed when a command is killed and thus discarded
from request shelf 625. Deallocation more commonly oc-
curs when a shelf entry has been processed successfully.
That is, in general, request shelf 625 fills up with access
requests from various thread contexts 115 after which
request shelf logic 627 looks at each request to decide
if it can be processed or if it must remain in request shelf

13 14

EP 2 187 316 B1

9

5

10

15

20

25

30

35

40

45

50

55

625 till the storage location it is requesting to access is
available. Once request shelf logic 627 determines that
the request can be processed, request shelf logic 627
deallocates the request from the shelf, having granted
the access so requested by thread context 115 in ques-
tion.
[0055] As system on chip (SoC) 60 has two processors
405 which can simultaneously (i.e., in the same clock
cycle) drive valid "request data", system-level ITU 620
can write to two registers within the single request self
data structure 625 including e.g. 8 shelves (or registers)
for each of eight thread contexts 115. In the event that
two requests arrive simultaneously, the request from one
processor, e.g. 405A is written to the highest available
entry followed by the request from the other processor,
e.g 405B in the next highest entry. Priority is determined
by convention.
[0056] Innovative handling is provided to support multi-
processor configuration 60, including for example:

a) in a configuration, e.g. system 100, with multiple
processors 105, each with a dedicated ITU 120, a
request from single multithreaded processor 105 is
handled per single clock cycle. In configuration 60
respective requests from multiple multithreaded
processors 405 are stored in request shelf 625 dur-
ing a single clock cycle;

b) in a configuration, e.g. system 100, with multiple
processors 105i each with a dedicated ITU 120, re-
spective request shelf controllers 200 are configured
to deallocate an entry in request shelf 125 while re-
quest shelf 125 is simultaneously (during a single
clock cycle) being written into by a request from sin-
gle processor 105i. In configuration 60) request shelf
controller 627 and request shelf 625 are configured
to handle a deallocate operation while simultaneous-
ly during a single clock cycle) storing N requests from
each of N multithreaded processors, e.g. two re-
quests from two multithreaded processors 405A and
405B;

c) in a configuration, e.g. system 100, with multiple
processors 105i each with a dedicated ITU 120, re-
spective request shelf controllers 200 are configured
to process a single kill command and associated
thread context identifier (tcid) of one of the thread
contexts 115 of a single professor 105i. In configu-
ration 60, kill commands and associated thread con-
text identifiers (tcid) are processed by controller 627
simultaneously (during a single clock cycle) from
each of multiple processors 405; and

d) in a configuration, e.g. system 100, with multiple
processors 105i each with a dedicated ITU 120 a
given shelf entry or register includes data defining
the access request from one of thread contexts 115.
In configuration 60, additional bits are appended to

each shelf entry indicating from which processor 405
the request originates. When the stored command
is later the correct bus 215 is driven which corre-
sponds to multithreaded processor 405 which origi-
nated the access request.

[0057] Reference is now made to Figure 7, a simplified
block diagram of a system 70 which illustrates another
feature of the preferred method and system. System 70
includes processors MIPS 105, ARM (Advanced RISC
microprocessor) 705 and another 707 of arbitrary archi-
tecture all sharing gated storage 410. System level ITU
620 controls access to gated storage 410. Signaling in-
terface 215 is used between MIPS 105 and ITU 620. Bus
adapters 715, 717 may be used to adapt the signaling of
signaling interface 215 to the corresponding signals of
respective processors 705 and 707. Processors 705, 707
are optionally single or multi-threaded processors, and/or
single or multiple core processors.
[0058] Reference is now also made to Figure 8, illus-
trating a method according to an embodiment of the
present invention. Multiple threads are running (step 801)
in multiple multithreaded processors 105, 705, and 707.
The multiple processors request (step 803) access to
gated storage 410. Requests which cannot be processed
are stored in a single request storage shared (step 805)
by multiple multithreaded processors 105, 705, and 707.
Waiting access requests from multiple multithreaded
processors 105 are stored (step 807) in the single gated
storage 410.
[0059] Although selected embodiments of the present
have been shown and described, it is to be understood
that the present, invention is not limited to the described
embodiments. Instead, it is to be appreciated that chang-
es may be made to these claims which follow.
[0060] The disclosures in United States patent appli-
cation no. 12/272,290, from which this application claims
priority, and in the abstract accompanying this applica-
tions are incorporated herein by reference.

Claims

1. A system including:

a plurality of multi-threaded processors, each
multi-threaded processor configured to have at
least one thread context running at least one
active thread;
a system-level inter-thread communications unit
that includes a plurality of control interfaces,
each control interface operatively connecting to
a respective one of the plurality of multi-threaded
processors,
a gated memory operatively connecting to the
system-level inter-thread communications unit,
and shared by the multithreaded processors,
wherein the thread contexts request access to

15 16

EP 2 187 316 B1

10

5

10

15

20

25

30

35

40

45

50

55

said gated memory by communicating a plurality
of access requests over said control interfaces,
said access requests originating from any of said
thread contexts within any of said multithreaded
processors;
a single request storage operatively connected
to the control interfaces; and
a controller operable to store said access re-
quests in said single request storage.

2. The system, according to claim 1, wherein said ac-
cess requests are from at least two of said thread
contexts and from at least two of said multithreaded
processors.

3. The system, according to claim 1 or 2, wherein said
multithreaded processors are of at least two different
architectures.

4. The system, according to claim 2 or 3, wherein said
system-level inter-thread communications unit is a
single inter-thread communications unit in the gated
storage system.

5. The system, according to any preceding claim,
wherein said controller and said request storage are
operable to store, in said request storage, during a
single clock cycle: a) one of said access requests
from any of said multithreaded processors; or b) at
least two of said access requests from least two said
multithreaded processors.

6. The system according to any one of claim 1 to 4,
wherein said controller and said request storage are
operable to store, in said request storage, during a
single clock cycle, at least two of said access re-
quests from at least two of said multithreaded proc-
essors and wherein, during said single clock cycle,
said controller and said request storage are further
adapted to deallocate one of said access requests,
thereby removing said one access request from said
request storage, while simultaneously accepting oth-
ers of said access requests from said multithreaded
processors.

7. The system, according to any preceding claim,
wherein said controller is operable to handle a kill
request and thereby to remove from said request
storage any of said access requests from any of said
multithreaded processors by receiving, via said plu-
rality of control interfaces, at least one identifier iden-
tifying at least one of said thread contexts.

8. The system, according to any preceding claim,
wherein said controller is operable to handle said
access requests from any of said multithreaded proc-
essors by receiving via said control interfaces at least
one identifier identifying at least one of said thread

contexts.

9. The system according to claim 1, wherein at least
two of the processors have different architectures.

10. A method of synchronization of data in a gated-stor-
age system including a plurality of control interfaces
operatively attached externally to a respective one
of a plurality of multithreaded processors and a gated
memory operatively connected to a system-level in-
ter-thread communications unit and shared between
the multithreaded processors, the method including
the steps of:

running at least one active thread in each of the
multithreaded processors by a plurality of thread
contexts on the multithreaded processors;
requesting access to the gated memory by com-
municating a plurality of access requests over
said control interfaces, said access requests
originating from any said thread contexts within
any of the multithreaded processors;
sharing a single request storage by the multi-
threaded processors; and
storing all access requests from the multithread-
ed processors in said single request storage.

11. The method according to claim 10, including the step
of storing, in said request storage, during a single
clock cycle, one of said access requests from any of
the multithreaded processors.

12. The method according to claim 10, including the step
of storing, in said request storage, during a single
clock cycle, at least two access requests from at least
two of the multithreaded processors.

13. The method according to claim 12, including the step
of deallocating one of said access requests, thereby
removing said one access request from said request
storage during said single clock cycle.

14. The method according to any one of claims 10 to 13,
including the step of handling access requests from
any of the multithreaded processors by receiving,
via said control interfaces, at least one identifier iden-
tifying any of said thread contexts.

15. The method according to any of claims 10 to 14,
including the step of handling a kill request and there-
by removing from said request storage any access
requests from any of the multithreaded processors
by receiving via said control interfaces at least one
identifier identifying at least one of said thread con-
texts.

17 18

EP 2 187 316 B1

11

5

10

15

20

25

30

35

40

45

50

55

Patentansprüche

1. System umfassend:

eine Vielzahl von Multi-Thread-Prozessoren,
wobei jeder Thread-Prozessor so konfiguriert
ist, dass er wenigstens einen Thread-Kontext
hat, der wenigstens einen aktiven Thread aus-
führt;
einer Kommunikationseinheit zur Kommunikati-
on zwischen Threads auf Systemebene, welche
Kommunikationseinheit eine Vielzahl von Steu-
erschnittstellen umfasst, wobei jede Steuer-
schnittstelle operativ mit einem der Vielzahl von
Multi-Thread-Prozessoren verbunden ist,
einem Gate gesteuerten Speicher, der operativ
mit der Kommunikationseinheit zur Kommuni-
kation zwischen den Threads auf Systemebene
verbunden ist und von den Multi-Thread-Pro-
zessoren gemeinsam genutzt wird, wobei diese
Thread-Kontexte Zugang zum Gate gesteuer-
ten Speicher anfragen, indem sie eine Vielzahl
von Zugangsanfragen über die Steuerschnitt-
stellen kommunizieren, wobei die Zugangsan-
fragen von irgendeinem der Thread-Kontexte in-
nerhalb irgendeines der Multi-Thread-Prozes-
soren stammen;
einem einzelnen Anfragespeicher, der operativ
mit den Steuerschnittstellen verbunden ist; und
einem Controller, der zum Speichern der Zu-
gangsanforderungen in dem einzelnen Anfra-
genspeicher betreibbar ist.

2. System nach Anspruch 1, wobei die Zugangsanfor-
derungen von wenigstens zwei der Thread-Kontexte
und wenigstens zwei der Multi-Thread-Prozessoren
sind.

3. System nach Anspruch 1 oder 2, wobei die Multi-
Thread-Prozessoren wenigstens zwei verschiedene
Architekturen haben.

4. System nach Anspruch 2 oder 3, wobei die Kommu-
nikationseinheit zur Kommunikation zwischen
Threads auf Systemebene eine einzige Kommuni-
kationseinheit zur Kommunikation zwischen
Threads in dem Gate gesteuerten System ist.

5. System nach einem vorhergehenden Anspruch, wo-
bei der Controller und der Anfragespeicher betreib-
bar sind, um in dem Anfragespeicher während einer
einzelnen Taktperiode zu speichern: a) eine der Zu-
gangsanforderungen von irgendeinem der Multi-
Thread-Prozessoren; oder b) wenigstens zwei der
Zugangsanfragen von wenigstens zwei der Multi-
Thread Prozessoren.

6. System nach irgendeinem der Ansprüche 1 bis 4,

wobei der Controller und der Anfragespeicher be-
treibbar sind, um in dem Anfragespeicher während
einer einzelnen Taktperiode wenigstens zwei der
Zugangsanfragen von wenigstens zwei der Multi-
Thread-Prozessoren zu speichern, und wobei wäh-
rend der einzelnen Taktperiode der Controller und
der Anfragespeicher ferner dafür geeignet sind, eine
der Zugangsanfragen freizugeben, wobei dadurch
die eine Zugangsanfrage von dem Anfragespeicher
entfernt wird, wobei gleichzeitig andere der Zu-
gangsanfragen von den Multi-Thread-Prozessoren
akzeptiert werden.

7. System nach einem vorhergehenden Anspruch, wo-
bei der Controller betreibbar ist, um eine Kill-Anfrage
zu behandeln, und dadurch von dem Anfragespei-
cher irgendwelche der Zugangsanfragen der Multi-
Thread-Prozessoren zu entfernen, in dem er über
die Vielzahl der Steuerschnittstellen wenigstens ei-
nen Identifizierer erhält, der wenigstens einen der
Thread-Kontexte identifiziert.

8. System nach einem vorhergehenden Anspruch, wo-
bei der Controller betreibbar ist, um die Zugangsan-
fragen von irgendeinem der Multi-Thread-Prozesso-
ren zu behandeln, in dem er über die Steuerschnitt-
stellen wenigstens ein Identifizierer erhält, der we-
nigstens einen der Thread-Kontexte identifiziert.

9. System nach Anspruch 1, wobei wenigstens zwei
der Prozessoren verschiedene Architekturen haben.

10. Verfahren zur Synchronisation von Daten in einem
Gate gesteuerten Speichersystem mit einer Vielzahl
von Steuerschnittstellen, die operativ an einem ent-
sprechenden Prozessor aus einer Vielzahl von Multi-
Thread-Prozessoren extern angeschlossen sind,
und einem Gate gesteuerten Speicher, der operativ
mit einer Kommunikationseinheit zur Kommunikati-
on zwischen Threads auf Systemebene verbunden
ist und zwischen den Multi-Thread Prozessoren ge-
meinsam genutzt wird, wobei das Verfahren die
Schritte umfasst:

Ausführen wenigstens eines aktiven Threads in
jedem der Multi-Thread-Prozessoren durch ei-
ne Vielzahl von Thread-Kontexten an den Multi-
Thread-Prozessoren;
Anfordern eines Zugangs zum Gate gesteuer-
ten Speicher durch Kommunizieren einer Viel-
zahl von Zugangsanfragen über die Steuer-
schnittstellen, wobei die Zugangsanfragen von
irgendeinem der Thread-Kontexte innerhalb ir-
gendwelchen der Multi-Thread-Prozessoren
stammen;
gemeinsames Nutzen eines einzigen Anfrage-
speichers durch die Multi-Thread-Prozessoren;
und

19 20

EP 2 187 316 B1

12

5

10

15

20

25

30

35

40

45

50

55

Speichern aller Zugangsanfragen von den Multi-
Thread-Prozessoren in dem einzelnen Anfrage-
speicher.

11. Verfahren nach Anspruch 10, wobei das Verfahren
den Schritt umfasst eines Speicherns einer der Zu-
gangsanfragen von irgendeinem der Multi-Thread-
Prozessoren in dem Anfragespeicher während einer
einzigen Taktperiode.

12. Verfahren nach Anspruch 10, wobei das Verfahren
den Schritt umfasst eines Speicherns von wenig-
stens zwei Zugangsanfragen von wenigstens zwei
der Multi-Thread-Prozessoren im Anfragespeicher
während einer einzigen Taktperiode.

13. Verfahren nach Anspruch 12, wobei das Verfahren
den Schritt eines Freigebens einer der Zugangsan-
fragen umfasst, wobei dadurch die eine Zugangs-
anfrage vom Anfragespeicher während der einzigen
Taktperiode entfernt wird.

14. Verfahren nach irgendeinem der Ansprüche 10 bis
13, wobei das Verfahren den Schritt eines Behan-
delns von Zugangsanfragen von irgendeinem der
Multi-Thread-Prozessoren umfasst, indem über die
Steuerschnittstelle wenigstens ein Identifizierer er-
halten wird, der irgendeinen der Thread-Kontexte
identifiziert.

15. Verfahren nach einem der Ansprüche 10 bis 14, wo-
bei das Verfahren den Schritt des Behandelns einer
Kill Anfrage umfasst und dadurch irgendwelche Zu-
gangsanfragen von irgendeinem der Multi-Thread-
Prozessoren vom Anfragespeicher entfernt, indem
über die Steuerschnittstellen wenigstens ein Identi-
fizierer erhalten wird, der wenigstens einen der
Thread-Kontexte identifiziert.

Revendications

1. Un système incluant :

une pluralité de processeurs multitâches, cha-
que processeur multitâche configuré pour avoir
au moins un contexte de tâche exécutant au
moins une tâche active ;
une unité de communication inter-tâches de ni-
veau système qui inclut une pluralité d’interfa-
ces de contrôle, chaque interface de contrôle
étant reliée fonctionnellement et respective-
ment à l’un des processeurs de la pluralité de
processeurs multitâches,
une mémoire à accès par circuit logique reliée
fonctionnellement à l’unité de communication in-
ter-tâches de niveau système, et partagée par
les processeurs multitâches, dans laquelle les

contextes de tâche demandent l’accès à ladite
mémoire à accès par circuit logique en commu-
nicant une pluralité de requêtes d’accès par l’in-
termédiaire des interfaces de contrôle, les re-
quêtes d’accès provenant de l’un quelconque
des contextes de tâche dans l’un quelconque
des processeurs multitâches ;
un stockage à simple requête relié fonctionnel-
lement aux interfaces de contrôle ; et
un contrôleur capable de stocker les requêtes
d’accès dans le stockage à simple requête.

2. Le système, selon la revendication 1, dans lequel
les requêtes d’accès sont issues d’au moins deux
des contextes de tâche et d’au moins deux des pro-
cesseurs multitâches.

3. Le système, selon la revendication 1 ou 2, dans le-
quel les processeurs multitâches sont d’au moins
deux architectures différentes.

4. Le système, selon la revendication 2 ou 3, dans le-
quel l’unité de communication inter-tâches de niveau
système est une simple unité communication inter-
tâches dans le système de stockage à accès par
circuit logique.

5. Le système, selon l’une des revendications précé-
dentes, dans lequel le contrôleur et le stockage à
requête sont capables de stocker, dans le stockage
à requête, pendant un simple cycle d’horloge : a)
une des requêtes d’accès issue de l’un quelconque
des processeurs multitâches ; ou b) au moins deux
des requêtes d’accès issues d’au moins deux pro-
cesseurs multitâches.

6. Le système selon l’une des revendications 1 à 4,
dans lequel le contrôleur et le stockage à requête
sont capables de stocker, dans le stockage à requê-
te, pendant un simple cycle d’horloge, au moins deux
des requêtes d’accès issues d’au moins deux des
processeurs multitâches et dans lequel, pendant le
simple cycle d’horloge, le contrôleur et le stockage
à requête sont en outre adaptés pour désaffecter
l’une de ces requêtes d’accès, de façon à effacer
ladite requête d’accès du stockage à requête, et à
accepter simultanément pendant ce temps d’autres
de ces requêtes d’accès issues de ces processeurs
multitâches.

7. Le système, selon l’une des revendications précé-
dentes, dans lequel le contrôleur est capable d’ef-
fectuer une requête de suppression et ainsi d’effacer
du stockage à requête l’une quelconque des requê-
tes d’accès de l’un quelconque des processeurs mul-
titâches en recevant, par l’intermédiaire de la plura-
lité d’interfaces de contrôle, au moins un identifiant
permettant d’identifier au moins un des contextes de

21 22

EP 2 187 316 B1

13

5

10

15

20

25

30

35

40

45

50

55

tâche.

8. Le système, selon l’une des revendications précé-
dentes, dans lequel le contrôleur est capable de ma-
nipuler les requêtes d’accès de l’un quelconque des
processeurs multitâches en recevant par l’intermé-
diaire des interfaces de contrôle au moins un iden-
tifiant permettant d’identifier au moins un des con-
textes de tâche.

9. Le système selon la revendication 1, dans lequel au
moins deux des processeurs ont des architectures
différentes.

10. Une méthode de synchronisation des données dans
un système de stockage à accès par circuit logique
incluant une pluralité d’interfaces de contrôle fonc-
tionnellement liées de manière externe et respecti-
vement à l’un des processeurs d’une pluralité de pro-
cesseurs multitâches et une mémoire à accès par
circuit logique fonctionnellement reliée à une unité
de communication inter-tâches de niveau système
et partagée entre les processeurs multitâches, la
méthode incluant les étapes :

d’exécution d’au moins une tâche active dans
chacun des processeurs multitâches grâce à
une pluralité de contextes de tâche dans les pro-
cesseurs multitâches ;
de demande d’accès à la mémoire à accès par
circuit logique par la communication d’une plu-
ralité de requêtes d’accès par l’intermédiaire
des interfaces de contrôle, les requêtes d’accès
provenant de l’un quelconque des contextes de
tâche dans l’un quelconque des processeurs
multitâches ;
de partage d’un stockage à simple requête avec
les processeurs multitâches ; et
de stockage de toutes les requêtes d’accès is-
sues des processeurs multitâches dans le stoc-
kage à simple requête.

un contrôleur capable de stocker les requêtes d’ac-
cès dans le stockage à simple requête.

11. La méthode selon la revendication 10, incluant l’éta-
pe de stockage, dans le stockage à requête, pendant
un simple cycle d’horloge, de l’une des requêtes
d’accès issues de l’un quelconque des processeurs
multitâches.

12. La méthode selon la revendication 10, incluant l’éta-
pe de stockage, dans le stockage à requête, pendant
un simple cycle d’horloge, d’au moins deux des re-
quêtes d’accès issues d’au moins deux des proces-
seurs multitâches.

13. La méthode selon la revendication 12, incluant l’éta-

pe consistant à désaffecter l’une des requêtes d’ac-
cès, de façon à effacer cette requête d’accès du stoc-
kage à requête pendant ce simple cycle d’horloge.

14. La méthode selon l’une des revendications 10 à 13,
incluant l’étape consistant à manipuler les requêtes
d’accès de l’un quelconque des processeurs multi-
tâches en recevant, par l’intermédiaire des interfa-
ces de contrôle, au moins un identifiant permettant
d’identifier l’un quelconque des contextes de tâche.

15. La méthode selon l’une des revendications 10 à 14,
incluant l’étape consistant à effectuer une requête
de suppression et ainsi effacer du stockage à requê-
te une quelconque requête d’accès de l’un quelcon-
que des processeurs multitâches en recevant par
l’intermédiaire des interfaces de contrôle au moins
un identifiant permettant d’identifier au moins un des
contextes de tâche.

23 24

EP 2 187 316 B1

14

EP 2 187 316 B1

15

EP 2 187 316 B1

16

EP 2 187 316 B1

17

EP 2 187 316 B1

18

EP 2 187 316 B1

19

EP 2 187 316 B1

20

EP 2 187 316 B1

21

EP 2 187 316 B1

22

EP 2 187 316 B1

23

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 20050251639 A [0009] [0015] [0017] [0024]
[0040] [0044] [0049]

• US 20030251639 A [0045]
• US 12272290 B [0060]

	bibliography
	description
	claims
	drawings

